大津法是一种图像灰度自适应的阈值分割算法,是1979年由日本学者大津提出,并由他的名字命名的。大津法按照图像上灰度值的分布,将图像分成背景和前景两部分看待,前景就是我们要按照阈值分割出来的部分。背景和前景的分界值就是我们要求出的阈值。遍历不同的阈值,计算不同阈值下对应的背景和前景之间的类内方差,当类内方差取得极大值时,此时对应的阈值就是大津法(OTSU算法)所求的阈值。
何为类间方差?
对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均灰度记为μ,类间方差记为g。
假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:
ω0=N0/ M×N (1) ω1=N1/ M×N (2) N0+N1=M×N (3) ω0+ω1=1 (4) μ=ω0*μ0+ω1*μ1 (5) g=ω0(μ0-μ)^2+ω1(μ1-μ)^2 (6)
将式(5)代入式(6),得到等价公式:
g=ω0ω1(μ0-μ1)^2 (7) 这个就是类间方差的公式表述
采用遍历的方法得到使类间方差g最大的阈值T,即为所求。
Otsu实现思路
1. 计算0~255各灰阶对应的像素个数,保存至一个数组中,该数组下标是灰度值,保存内容是当前灰度值对应像素数
2. 计算背景图像的平均灰度、背景图像像素数所占比例
3. 计算前景图像的平均灰度、前景图像像素数所占比例
4. 遍历0~255各灰阶,计算并寻找类间方差极大值
C++代码实现:
#include#include #include #include using namespace cv;using namespace std;//***************Otsu算法通过求类间方差极大值求自适应阈值******************int OtsuAlgThreshold(const Mat image);int main(int argc,char *argv[]) { Mat image=imread(argv[1]); imshow("SoureImage",image); cvtColor(image,image,CV_RGB2GRAY); Mat imageOutput; Mat imageOtsu; int thresholdValue=OtsuAlgThreshold(image); cout<<"类间方差为: "< <
原图像:
该幅图像计算出来的大津阈值是104;
用这个阈值分割的图像:
跟Opencv threshold方法中使用CV_THRESH_OTSU参数计算出来的分割图像一致:
直方图直观理解
大津算法可以从图像直方图上有一个更为直观的理解:大津阈值大致上是直方图两个峰值之间低谷的值。
对上述代码稍加修改,增加画出直方图部分:
#include为显示清晰,本次使用一幅对比明显的灰度图:#include #include #include using namespace cv;using namespace std;//***************Otsu算法通过求类间方差极大值求自适应阈值******************int OtsuAlgThreshold(const Mat image);int main(int argc,char *argv[]) { Mat image=imread(argv[1]); imshow("SoureImage",image); cvtColor(image,image,CV_RGB2GRAY); Mat imageOutput; Mat imageOtsu; int thresholdValue=OtsuAlgThreshold(image); cout<<"类间方差为: "< <
OTSU分割效果:
对应阈值和直方图:
以上图像黑白对比度非常明显,从直方图上也可以看到只有两个波峰,求得的OTSU阈值为102。
上图中红色的竖线标识出了OTSu阈值分割线,显见,阈值大致位于两个波峰的低谷之间。